Home Articles Facts Games Poems & Quotes
The Great Ketchup Mystery

Some fluids have a mysterious property: one moment they're thick, the next they're thin. Physicists aim to find out why with the aid of an experiment in space.

by Patrick L Barry and Dr Tony Phillips

Everyone has fallen prey to the ketchup bottle at one time or another.

After struggling to dislodge a meager few drops of the red liquid, an avalanche suddenly gushes out and buries your perfectly cooked burger. With suspiciously perfect timing, the ketchup changes from a thick paste to a runny liquid.

If you find yourself splattered and wondering "why?", you're in good company. Theoretical physicists are puzzled, too.

Ketchup is one of many complex fluids - including whipped cream, blood, film emulsions, nail polish and some plastics - that share a property called "shear thinning." Normally thick like honey, they can become thin and flow like water when stirred or shaken.

Paint is another example. How can paint be thin enough at one moment to flow from a stroked brush, and an instant later be thick enough not to drip down the wall? Shear thinning again.

The phenomenon is common enough, yet scientists aren't sure why it happens. Says researcher Robert Berg of the National Institute of Standards and Technology, "the details depend on interactions at the molecular level [in the fluid], and that is still poorly understood."

The sudden surge of ketchup from a bottle typifies an important and puzzling property of many liquids: shear thinning.

Current theories cannot predict the thickness (or "viscosity") of many fluids. It's a problem that vexes physicists and manufacturers alike. Suppose, for instance, that a plastics-maker needs to know how some new polymer "goop" might flow through a pipe. The only way to find out might be to try it - a tedious and sometimes innovation-stifling process. What they really need is a theory that works, a way to anticipate changes in viscosity "before the ketchup explodes from the bottle."

Researchers hope that a space-experiment called CVX-2 (short for "Critical Viscosity of Xenon-2") will soon provide new data about the basic physics of such fluids. Berg is the principal investigator for the experiment, which is slated to fly this summer onboard space shuttle Columbia (STS-107).

CVX-2 is designed to study shear thinning in xenon, a substance used in lamps and ion rocket engines. Xenon is chemically inert, so its molecules consist of a single atom - it's about as close as you can get to the flying billiard balls of an idealized gas or liquid. Unlike ketchup, which contains many ingredients ranging from microscopic ions of dissolved salt to visible chunks of pureed tomato, xenon should be relatively easy to understand.

The phase diagram for xenon illustrates the concept of critical point - the highest temperature and pressure at which xenon can exist as a liquid and a gas at the same time.

Simple liquids like xenon don't normally experience shear thinning. They're either thick or thin, and they stay that way. But this changes near the "critical point" - a special combination of temperature and pressure where fluids can exist as both a liquid and a gas simultaneously. At their critical point, simple fluids should be able to "shear-thin" (a verb) just like ketchup does.

Gregory Zimmerli, a scientist at NASA's Glenn Research Centre, explains that "fluids at the critical point resemble a hazy fog - a flurry of little regions constantly fluctuating between liquid-like and gas-like densities. Theory predicts that this fine-grained structure should make the simple fluid shear-thin, like more complex fluids do." (Zimmerli is the project scientist for the CVX-2 experiment.)

When CVX-2 reaches orbit, researchers will adjust the pressure and temperature of a xenon sample within the test chamber until it reaches its critical point. A tiny vibrating paddle will then stir the xenon and, if all goes as planned, cause it to thin.

The patch of "window screen" suspended between the electrodes is the paddle that will stir the CVX-2 xenon sample.

Why do the experiment in space? Critical-point fluids are easily compressed. On Earth they collapse under their own weight and become denser at the bottom. In orbital free-fall those density differences vanish - a key requirement for a good experiment.

Researchers will probe the physics of shear thinning by varying the temperature of the xenon and amount of stirring it receives. The same paddle that stirs the sample will also measure its viscosity, just as you might estimate the thickness of honey by trying to move a spoon through it.

At least that's what scientists are hoping will happen.

The ketchup-like behaviour of pure fluids at their critical point is still only theoretical. Even simulations using supercomputers can't prove the theory. "Especially near the critical point, there aren't computers that can simulate the fluid's behaviour," notes Berg. "The chains of interactions between molecules are so long that computers just aren't powerful enough to do it."

Consider that the next time you whack the bottom of a ketchup bottle. Even supercomputers can't predict the outcome.


Home   l  Biology   l  Physics   l  Planetary Science   l  Technology   l  Space

First Science 2014